
Page 0 of 9

Extensible Markup
Language (XML)
A Primer

1/3/2013

Page 1 of 9

Table of Contents
Section 1: Introduction ... 2

Section 2: An XML Primer ... 2

Section 3: XML Attributes ... 4

Section 4: XML Namespaces and Prefixes .. 6

Section 5: XML Review .. 8

Page 2 of 9

Section 1: Introduction

The United States Geoscience Information Network (USGIN) specifies the use of interchange

formats to exchange and present data in an interoperable manner. One such interchange format is

XML.

This tutorial is designed to familiarize the reader with the basics of XML, thereby permitting the

reader to interact more easily with the ubiquitous XML documents used by USGIN.

Section 2: An XML Primer

XML stands for Extensible Markup Language, referring to the fact that XML is designed to be

readily adapted for a variety of uses.

Because XML is a markup language, both the content of an XML document and the structure

applied to that content are visible to the user. The visible structure of markup language

documents is provided markup language elements.

A markup language element is demarcated by markup language tags. Opening tags open the

element, and closing tags close the element. The content of a markup language element exists

between the opening and closing tags of the element.

In a markup language document, elements appear like so:

<tag>content</tag>

For some, the above example may seem reminiscent of HTML. That is because HTML is a

markup language that uses the same syntax as XML (HTML stands for "Hypertext Markup

Language").

So XML and HTML are both markup languages. Both XML and HTML documents are

structured by elements, and both XML and HTML elements are demarcated by tags.

Markup language elements are hierarchical: elements can be nested within elements. Once an

element has been opened, everything between the opening tag and the closing tag, including

elements, is part of the element demarcated by the surrounding tags.

For example, an XML document containing the contact information for a State Geothermal Data

web service might appear as follows:

<ContactInfo>

<Phone>

http://usgin.org/glossary#interchange_format
http://usgin.org/glossary#interchange_format
http://usgin.org/glossary#interoperability
http://usgin.org/glossary#xml
http://usgin.org/glossary#markup_language
http://usgin.org/glossary#element
http://usgin.org/glossary#html
http://usgin.org/glossary#syntax

Page 3 of 9

<Facsimile>(987) 654-3210</Facsimile>

<Voice>(123) 456-7890</Voice>

</Phone>

</ContactInfo>

The above example of nested markup language elements is analogous to folders within folders

on a computer (Figure 1). But markup languages documents don't use folders; they use elements.

Figure 1: An example of nested folders within a computer filing system

All markup language documents begin with a root element: an element that contains all other

elements in the document. In the case of HTML documents, this is the HTML element

(<html>).

It is important to remember that, unless otherwise specified, elements inherit the characteristics

of any elements within which they are nested; you will learn more about this in subsequent

sections.

Markup language elements can close themselves. For example, the horizontal rule (<hr>)

HTML element can be closed without a closing tag just by adding a space followed by a

forward slash (/) to the opening tag of the element, like so:

<hr />

When interpreted by a browser, the horizontal rule tag produces a horizontal line, like so:

XML documents sometimes employ self-closing tags, usually when attributes modifying the

element are more important than any content within the element.

http://usgin.org/glossary#html

Page 4 of 9

Section 3: XML Attributes

Most XML documents tend to look a bit more complicated than previous examples suggest,

owing to the presence of attributes.

Markup language attributes specify additional parameters that modify a given element; multiple

attributes can modify a single element, and each attribute can specify multiple values.

In general, markup language attributes appear within the opening tag of a given element:

<tag attribute="value">content</tag>

Attributes can also be present within self-closing elements:

<tag attribute="value" />

As a practical example, the paragraph (<p>) element is used to designate a paragraph of text in

an HTML document:

<p>The quick brown fox jumps over the lazy dog.</p>

When interpreted by a web browser, the sentence between the <p> tags of the paragraph

element would appear as its own paragraph, like so:

The quick brown fox jumps over the lazy dog.

But the paragraph element can be modified by the style attribute, to produce all kinds of

stylistic effects:

<p style="font-family:cursive; font-weight:bold;">The quick

brown fox jumps over the lazy dog.</p>

Here, the style attribute (highlighted in red), as applied to the paragraph element, specifies

multiple values that will cause all content within this particular paragraph element to use the

cursive font family; the text will also be bolded. When interpreted by a web browser, the above

paragraph element would appear like so:

The quick brown fox jumps over the lazy dog.

Recall that elements can be nested; this means that any given element can include other

elements.

For example: the unordered list () and list item () elements are used to create lists

in HTML documents. Once the unordered list element is opened, any list item elements within

are interpreted by web browsers to create bullet points on a list, like so:

http://usgin.org/glossary#xml
http://usgin.org/glossary#attribute_ml
http://usgin.org/glossary#markup_language
http://usgin.org/glossary#html

Page 5 of 9

Item 1

Item 2

Item 3

Interpreted by a web browser, this produces a bulleted list that would appear as follows:

 Item 1
 Item 2
 Item 3

As each of the three list item elements are nested within the unordered list element, anything

that modifies the unordered list element also modifies the list item elements. For example:

<ul style="font-family:cursive; font-weight:bold;">

Item 1

Item 2

Item 3

Again, the style attribute has been used to modify the unordered list element (and everything

nested within it), specifying bolded text using the cursive font family. This produces the

following results

 Item 1

 Item 2

 Item 3

Note that attributes can also be used to further modify or even override the attributes of parent

elements on an individual basis. For example, the style attribute could be used to make Item 1

blue or Italicized, or it could be used to specify a different font family. These parameters would

take precedence over those specified by the style attribute modifying the unordered list element.

XML elements can also be modified by attributes in the exact same way. For example:

<OperationsMetadata>

<Operation name='GetCapabilities' />

http://usgin.org/glossary#xml

Page 6 of 9

</OperationsMetadata>

The Operations Metadata element (<OperationsMetadata>) contains metadata about the

operations performed by a web service. Everything within this element, therefore, constitutes

web service operation metadata.

In the above example, the Operation element (<Operation>) is modified by the name

attribute (name='GetCapabilities').

Here, the name attribute indicates that the name of one operation performed by the web service

is GetCapabilities. Any content within the Operation element thereby constitutes metadata

about the GetCapabilities operation. In this case, though, the Operation element is closed by a

forward slash '/' and therefore contains no metadata.

Having made it this far, you are well on your way to understanding the basics of XML.

Section 4: XML Namespaces and Prefixes

Within XML documents, it sometimes becomes necessary to differentiate one element from

another based on the context in which these elements are used.

For example, the <table> element is used differently between XML and HTML. Within an

XML document in which both XML and HTML <table> elements are present, namespaces

and prefixes can be used to differentiate XML table elements from HTML table elements.

Namespaces identify the context in which a given element is used, thereby differentiating that

element from otherwise-identical elements.

Theoretically, any label can be used as a namespace, but XML namespaces should be URIs.

Ideally, an XML namespace is an HTTP-capable URI that dereferences to a web-accessible

description of the context identified by the namespace. Consequently, most XML namespaces in

common use look like standard web addresses.

Going back to the above example, a namespace identifying HTML5 as the context for a given

<table> element might appear as follows:

http://www.w3.org/TR/html5/

When entered into a web browser, this namespace dereferences to a description of HTML5.

Before a namespace can be used to differentiate a given element, the namespace must first be

declared within the desired XML document. This is accomplished by means of the XML

namespace attribute (xmlns); the namespace can be declared in two ways:

1. Declaring the namespace within the desired element, like so:

http://usgin.org/glossary#metadata
http://usgin.org/glossary#web_service
http://usgin.org/glossary#xml
http://usgin.org/glossary#xml
http://usgin.org/glossary#element
http://usgin.org/glossary#html
http://usgin.org/glossary#identifier
http://usgin.org/glossary#uri
http://usgin.org/glossary#dereference
http://usgin.org/glossary#attribute_ml

Page 7 of 9

<table xmlns="http://www.w3.org/TR/html5/" />

2. Binding the namespace to an XML prefix that can be used as a proxy for the bound

namespace within the element in which the binding took place (recall that nested

elements inherit the characteristics of the parent elements in which they are nested)

Prefixes are short text strings that precede and differentiate markup language tags, attributes,

and even the content of an element, like so:

<prefix:tag prefix:attribute="value">prefix:content</prefix:tag>

As indicated previously, prefixes serve as a proxy for a full namespace, but they can only do so

within an element in which they have been bound to a namespace. In other words, a prefix

cannot refer back to a bound namespace unless the prefix is used in an element in which the

prefix has been bound to a namespace or which has inherited the binding from a parent element.

To give an example, let us assume that the <table> element we wish to differentiate via a

bound namespace is nested within a <body> element. If we wished to declare a binding

between a prefix and an appropriate namespace, we could do so either in the <table> element

or within the <body> element within which the <table> element is nested, like so:

1. Binding takes place in the <body> element:

<body xmlns:html5="http://www.w3.org/TR/html5/">

<html5:table>content</html5:table>

</body>

2. Binding takes place in the <table> element:

<html5:table xmlns:html5="http://www.w3.org/TR/html5/" />

In both examples, the xmlns attribute is used to bind the chosen prefix, html5, with the desired

namespace, http://www.w3.org/TR/html5/; the prefix is then attached to the <table> element

to invoke the namespace and thereby differentiate the <table> element from other <table>

elements.

Typically, namespaces are bound to prefixes in parent elements and invoked via prefix where

necessary in nested elements, except where it is absolutely necessary to bind a prefix to a

namespace within the same element in which the namespace is invoked.

To give a more concrete example, color-coded in exactly the same manner as the previous

example:

http://usgin.org/glossary#binding

Page 8 of 9

<wfs:WFS_Capabilities xmlns:wfs="http://www.opengis.net/wfs"

xmlns:ows="http://www.opengis.net/ows">

This is the root element (<WFS_Capabilities>) of the capabilities document that describes

a National Geothermal Data System web feature service. Here, two namespaces are declared and

bound to two different prefixes via the xmlns attribute:

 The wfs prefix is bound to the following namespace: http://www.opengis.net/wfs
 The ows prefix is bound to the following namespace: http://www.opengis.net/ows

Later on in the document, the following elements are nested within the root element in which the

binding took place:

<ows:Abstract>Well header information for oil and gas wells

in Arizona.</ows:Abstract>

<wfs:Name>aasg:Wellheader</wfs:Name>

These prefixes indicate that the Abstract element is used in the context of an Open Geospatial

Consortium OWS Common Implemetation Specification XML schema; likewise, the Name

element is used in the context of an Open Geospatial Consortium web feature service.

Information about the context of these elements can be found at the web location indicated by the

namespaces to which the prefixes have been bound.

Section 5: XML Review

In this tutorial, we have established the following:

 XML is a markup language
 XML uses elements as basic structural components; elements are comprised by an opening tag,

content, and a closing tag:

<tag>content</tag>

 Markup language elements can close themselves:

<tag />

 Elements can be nested within each other, much like folders on a computer:

<tag1>

<tag2>

<tag3 />

http://usgin.org/glossary#capabilities_document
http://geothermaldata.org/
http://usgin.org/glossary#wfs
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://usgin.org/glossary#schema
http://usgin.org/glossary#markup_language
http://usgin.org/glossary#element

Page 9 of 9

</tag2>

</tag1>

 Unless otherwise specified, nested elements inherit the characteristics of elements within which
they are nested

 Markup language documents typically begin with a root element within which all other elements
are nested

 Markup language elements can be modified by attributes; there can be multiple attributes per
tag and multiple values per attribute:

<tag attribute="value" />

 Markup language elements can be differentiated from one another by namespaces, which
identify a specific context in which a given element should be interpreted

 Namespaces must be declared using the xmlns attribute, either within a specific element or
bound to a prefix that acts as a proxy for the full namespace

 Prefixes refer to and invoke a namespace that has been bound within a given element or the
parents thereof; prefixes can modify tags, attributes, and content:

<prefix:tag prefix:attribute="value">prefix:content</prefix:tag>

With this background, it should now be possible to understand and interact with USGIN XML

documents more easily.

This concludes the USGIN XML tutorial.

http://usgin.org/glossary#identifier

